metal-organic papers

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

Yin Yin Teo, Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 113 K Mean σ (C–C) = 0.006 Å Disorder in main residue R factor = 0.047 wR factor = 0.133 Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis[1,3-bis(diphenylphosphino)propane- $\kappa^2 P$,P']silver(I) hemi[cyclopentyldiphenylbis(trifluoroacetato- κO)stannate(IV)] hemi[triphenylbis-(trifluoroacetato- κO)stannate(IV)]

Received 8 September 2004

Accepted 16 September 2004

Online 25 September 2004

In the crystal structure of the title co-crystal, $[Ag(C_{27}H_{26}P_{2})_2]$ - $[Sn(C_6H_5)_3(C_2F_3O_4)_2]_{0.5}[Sn(C_6H_5)_2(C_5H_9)(C_2F_3O_4)_2]_{0.5}$, the Ag atom shows tetrahedral coordination, whereas the Sn atom shows trigonal-bipyramidal coordination. There are no significant interactions between the cations and anions.

Comment

Several reports have detailed mixed triorganotin compounds, the 'mixed' groups being a chlorophenyl and two phenyl groups (Lo *et al.*, 1997), chlorophenyl and two tolyl groups (Lo & Ng, 2004b), as well as a cyclopentyl and two phenyl groups (Lo *et al.*, 1999; Lo & Ng, 2004a). Interest in the solid-state structures of such mixed compounds arises from their generally biological activities compared with those of the symmetrical compounds (Kumar Das *et al.*, 1989).

As triphenyltin trifluoroacetate is a Lewis acid, it can be converted to the triphenylbis(trifluoroacetato)stannate anion; the anion has been isolated as the bis[1,2-bis(diphenylphosphino)ethane]silver salt (Chee *et al.*, 2003). The report is now extended to the bis[1,2-bis(diphenylphosphino)-propane]silver derivative of the mixed cyclopentyldiphenyltin system; however, the silver stannate that was isolated is an intimate 1/1 co-crystal of the cyclopentyldiphenylbis(trifluoroacetato)stannate and triphenylbis(trifluoroacetato)-stannate salts (Figs. 1, 2, 3 and 4).

The Ag atom in the cation shows tetrahedral coordination; the Ag–P distances are marginally shorter than those of the bis[bis(diphenylphosphino)ethane)]silver salt (Chee *et al.*, 2003) owing to the greater flexibility in the ligand, which has three methylene linkages. For the anion, strict comparison of the bond dimensions is difficult as the anion is severely disordered; nevertheless, the Sn atom is unambiguously fivecoordinate in a *trans*-trigonal–bipyramidal environment.

Experimental

Cyclopentyldiphenyltin hydroxide was synthesized as described previously (Lo *et al.*, 1999) from the cleavage of cyclopentyltriphenyltin by iodine followed by the hydrolysis of the iodide by sodium hydroxide; the mixed cycloalkyl/aryl compound (0.18 g,

O 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

ORTEPII (Johnson, 1976) plot of the triphenylbis(trifluoroacetato)stannate ion, with displacement ellipsoids drawn at 50% probability level. H atoms are drawn as spheres of arbitrary radii.

Figure 2

ORTEPII (Johnson, 1976) plot of the cyclopentyldiphenylbis(trifluoroacetato)stannate ion, with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

0.5 mmol) and trifluoroacetic acid (0.06 g, 0.5 mmol) were heated in a small volume of ethanol. 1,3-Bis(diphenylphosphino)propane (0.41 g, 1 mmol) and silver trifluoroacetate (0.11 g, 0.5 mmol) were dissolved in a small volume of ethanol. The two solutions were mixed and heated for several minutes. The solution was filtered; evaporation of the solvent gave a product that was then recrystallized from ethanol. The compound was expected to be the simple salt, with the bis(trifluoroacetato)cyclopentyldiphenylstannate ion as the counter-ion.

Figure 4

ORTEPII (Johnson, 1976) plot of the bis[1,3-bis(diphenylphosphino)propane]silver cation, with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

However, the refinement showed that the anion is a 50:50 mixture of cyclopentyldiphenylbis(trifluoroacetato)stannate and triphenylbis-(trifluoroacetato)stannate ions. The presence of the triphenyltin entity is possibly attributed to the presence of triphenyltin hydroxide

metal-organic papers

that is formed through the iodine cleavage of the cycloalkyl-tin bond of the cyclopentyltriphenyltin reagent.

Crystal data

$C_{27}H_{26}AgP_2^+ \cdot 0.5C_{22}H_{15}F_6O_4Sn^- \cdot -$	Z = 2
$0.5C_{21}H_{19}F_6O_4Sn^-$	$D_x = 1.482 \text{ Mg m}^{-3}$
$M_r = 1504.75$	Mo $K\alpha$ radiation
Triclinic, $P\overline{1}$	Cell parameters from 14392
a = 10.6019 (3) Å	reflections
b = 18.0331(5) Å	$\theta = 2.3-26.4^{\circ}$
c = 18.3529(5) Å	$\mu = 0.82 \text{ mm}^{-1}$
$\alpha = 91.372 \ (1)^{\circ}$	T = 113 (2) K
$\beta = 93.985 \ (1)^{\circ}$	Irregular block, colorless
$\gamma = 105.418 \ (1)^{\circ}$	$0.60 \times 0.51 \times 0.42 \text{ mm}$
$V = 3371.06 (16) \text{ Å}^3$	

Data collection

Siemens P4/CCD area-detector	13501 independent reflections
diffractometer	10515 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.028$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.4^{\circ}$
SADABS (Bruker, 2001)	$h = -13 \rightarrow 13$
$T_{\min} = 0.616, \ T_{\max} = 0.710$	$k = -22 \rightarrow 22$
26881 measured reflections	$l = -22 \rightarrow 22$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0642P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.047$	+ 6.1836P]
$wR(F^2) = 0.133$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
13501 reflections	$\Delta \rho_{\rm max} = 1.04 \text{ e } \text{\AA}^{-3}$
961 parameters	$\Delta \rho_{\rm min} = -0.95 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Sn1-C1	2.139 (4)	Sn1'-C13'	2.114 (4)
Sn1-C7	2.149 (5)	Sn1'-O1'	2.254 (8)
Sn1-C13	2.110 (7)	Sn1'-O3'	2.244 (6)
Sn1-O1	2.252 (8)	Ag1-P1	2.468 (1)
Sn1-O3	2.236 (6)	Ag1-P2	2.499(1)
Sn1'-C1'	2.160 (7)	Ag1-P3	2.479 (1)
Sn1′-C7′	2.140 (5)	Ag1-P4	2.470 (1)
C1-Sn1-C7	115.0 (2)	C1' - Sn1' - O3'	84.5 (3)
C1-Sn1-C13	124.2 (4)	C7'-Sn1'-C13'	114.7 (3)
C1-Sn1-O1	85.8 (3)	C7′-Sn1′-O1′	88.5 (3)
C1-Sn1-O3	97.4 (3)	C7′-Sn1′-O3′	93.0 (3)
C7-Sn1-C13	120.4 (4)	C13'-Sn1'-O1'	90.2 (3)
C7-Sn1-O1	86.4 (3)	C13'-Sn1'-O3'	90.4 (3)
C7-Sn1-O3	86.7 (3)	O3'-Sn1'-O1'	178.0 (3)
C13-Sn1-O1	91.0 (4)	P1-Ag1-P2	92.50 (4)
C13-Sn1-O3	92.3 (4)	P1-Ag1-P3	123.21 (4)
O3-Sn1-O1	173.1 (3)	P1-Ag1-P4	119.25 (3)
C1'-Sn1'-C7'	127.0 (3)	P2-Ag1-P3	106.11 (3)
C1'-Sn1'-C13'	118.2 (3)	P2-Ag1-P4	120.12 (4)
C1'-Sn1'-O1'	93.5 (3)	P3-Ag1-P4	96.84 (3)

The triorganobis(trifluoroacetato)stannate anion was intially refined cyclopentyldiphenylbis(trifluoroacetato)stannate; as however, as the refinement was not satisfactory, it was refined as disordered, but the refinement was still not satisfactory. The refinement was only meaningful when the anion was refined as an $[Sn(C_6H_5)_2(C_5H_9)(O_2CCF_3)_2]$ anion that is disordered with respect to an $[Sn(C_6H_5)_3(O_2CCF_3)_2]$ anion. As the disorder refined to almost 50:50, the occupancies were fixed as 0.5 each. A number of restraints were applied to model the disorder. The disorder also affected the cation, and the phenyl rings of the phosphine ligand were refined as rigid hexagons with 1.39 Å bonds. In the cyclopentyl ring, the C-Cdistances were restrained to 1.50 (1) Å and the 1,3-related distances to 2.45 (2) Å. For the carboxyl fragments, the C-O distances were restrained to 1.25 (1) Å; the C-C distance was restrained to 1.54 (1) Å. The C-F distances were restrained to 1.33 (1) Å; the $F \cdots F$ distance was restrained to 2.17 (1) Å and the $C \cdots F$ distance to 2.35 (2) Å. Additionally, the Sn-C and Sn-O distances for the pairs of unprimed atoms were set to be within 0.01 Å of those for the pairs of primed atoms. The four-atom $C-CO_2$ fragments were restrained to be nearly planar. The vibrations of the atoms other than Sn, Ag and P were restrained to be approximately isotropic for the F, O and C atoms. H atoms were placed at calculated postions in the ridingmodel approximation [aromatic C-H = 0.95 Å and aliphatic C-H =0.99 Å, and $U_{iso}(H) = 1.2U_{eq}(C)$]. The final difference Fourier map had a peak at 1 Å from atom Sn1 and a hole at 1 Å from Sn1'

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank Dr Jan Wikaira of the University of Canterbury for the diffraction measurements, and the University of Malaya (F0190/2004A and IRPA 09-02-03-1021) for generously supporting this work.

References

Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Chee, C. F., Lo, K. M. & Ng, S. W. (2003). Acta Cryst. E59, m273-m275.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Kumar Das, V. G., Kuthubutheen, A. J., Balabaskaran, S. & Ng, S. W. (1989). Main Group Met. Chem. 12, 389-424.

Lo, K. M., Kumar Das, V. G. & Ng, S. W. (1999). Acta Cryst. C55, 889-894.

- Lo, K. M. & Ng, S. W. (2004a). Acta Cryst. E60, m715-m716.
- Lo, K. M. & Ng, S. W. (2004b). Acta Cryst. E60, m717-m719.
- Lo, K. M., Ng, S. W. & Kumar Das, V. G. (1997). Acta Cryst. C53, 545-546.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.